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Basic setting of Mathematical Finance:

(St)0≤t≤T stochastic process modelling the price of a risky asset
(”stock”).
Bt ≡ 1, for 0 ≤ t ≤ T : riskfree ”bond”.

Typical Question (Bachelier 1900, Black-Merton-Scholes 1973):

Pricing and Hedging of options like

CT = (ST − K )+
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Basic Result:

Fundamental Theorem of Asset Pricing

Under suitable assumptions we have:
(St)0≤t≤T does not allow for an arbitrage iff there is an equivalent
martingale measure Q ∼ ℙ for S .

Ross ’76
Harrison–Kreps ’79
Harrison–Pliska ’81
Kreps ’81
.
.
.
Delbaen-S. ’94,’98.
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Corollary (sometimes called ”second fundamental theorem of asset
pricing”):

If there is a unique equivalent martingale measure Q for the
process (St)0≤t≤T then the option CT above (in fact, any
ℱT -measurable, Q-integrable function) can be represented as

CT = EQ [CT ] +

∫ T

0
Ht dSt ,

for suitable ”hedging strategy” (Ht)0≤t≤T .

Application:

St = S0 + �Wt , 0 ≤ t ≤ T (Bachelier 1900).
St = S0e�Wt+�t , 0 ≤ t ≤ T (Samuelson 1965).

Mathematical tool:

”Martingale representation theorem” (K. Itô).
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Theorem

([Delbaen, S. 1994]): Let (St)0≤t≤T be a locally bounded process
which fails to be a semi-martingale (e.g. fractional Brownian
motion with H ∕= 1

2).
Then (St)0≤t≤T allows for a free lunch with vanishing risk by
simple integrands.
More precisely: there is � > 0 such that, for " > 0 and M > 0,

there is a simple integrand H =
N∑
i=1

Hi1]ti−1,ti
] such that

(H ⋅ S)T ≥ −", a.s

and
ℙ[(H ⋅ S)T ≥ M] ≥ �.

Compare also Rogers ’97, Cheridito ’03, Sottinen-Valkeila ’03.
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But: If we introduce transaction costs of " > 0, the arbitrage
possibilities disappear in a wide class of models, containing
(exponential) fractional Brownian motion.
[Guasoni, Rasonyi, Schachermayer ’08]

Formal setting: Let (St)0≤t≤T be an ℝ+-valued stochastic process
and " > 0.

Assume that S is continuous.

ask price: St(1 + ")
bid price: St/(1 + ")

Davis-Norman ´90, Jouini-Kallal ’95, Cvitanic-Karatzas ’96,
Kabanov, Stricker, Touzi, Rasonyi,....
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Trading strategies:

Predictable processes (#t)0≤t≤T of finite variation and satisfying
#0 = #T = 0: ”trading strategy”.

Value process:

V "
t (#) =

∫ t

0
#udSu − "

∫ t

0
Su dVaru(#)

well defined a.s. as a pathwise Stieltjes integral.

Campi, S. 2006 show that this forms indeed the natural class of
integrands.
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Admissibility of value processes:

Two versions of admissibility:
Version A (Harrison-Pliska ´81,...Delbaen-S. ´94,´98)

V "
t (#) ≥ −M a.s.,

for each 0 ≤ t ≤ T and some M > 0.

Version B (Merton ´73,...,Sin ´96, Yan ´98,
Jarrow-Protter-Shimbo ´08)

V "
t (#) ≥ −M(1 + St) a.s.,

for each 0 ≤ t ≤ T and some M > 0.
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Definition

The stochastic process (St)0≤t≤T allows for an arbitrage under "
transaction costs (for " > 0 fixed) if there is an admissible value
process (V "

t (#))0≤t≤T s.t.

ℙ[V "
T (#) ≥ 0] = 1,

ℙ[V "
T (#) > 0] > 0.

Remark

Depending on the choice of the concept of admissibility there are
presently two versions of the concept of (no) arbitrage.
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The analogue to the concept of equivalent (local)
martingale measures:

Definition (Jouini-Kallal ’95,...)

An "-consistent price system for the given process (St)0≤t≤T is a
pair ((S̃t)0≤t≤T ,Q) s.t. S̃ is an ℝ+-valued stochastic process
satisfying

(i) 1
1+" ≤

S̃t
St
≤ 1 + ", a.s. for all 0 ≤ t ≤ T ,

(ii) Q ∼ ℙ,

(iii) Version A: (S̃t)0≤t≤T is a local martingale under Q.
Version B: (S̃t)0≤t≤T is a true martingale under Q.
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Theorem

(Guasoni-Rasonyi-S. 2008): Let (St)0≤t≤T be an ℝ+-valued
continuous stochastic process adapted to (Ω,ℱ , (ℱt)0≤t≤T ,ℙ).
T.F.A.E.

(i) For each " > 0, S does not allow for an arbitrage under "
transaction costs.

(ii) For each " > 0, S admits an "-consistent price system.

Remark

Remark: The theorem holds true in Version A as well as in
Version B.
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Proof of Theorem: (sketch of ideas)

(ii) ⇒ (i) easy (as usual):
Make the easy observation that it is better to trade on (S̃t)0≤t≤T ,
without transaction costs, than to trade on (St)0≤t≤T with "
transaction costs because of

St/(1 + ") ≤ S̃t ≤ St(1 + ").
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(i) ⇒ (ii) is the non-trivial part of the theorem. Assuming NA
under " transaction costs, let us construct S̃ and Q.

Define the stopping time �0 by

�0 = inf{t :
St

S0
equals 1 + " or

1

1 + "
} ∧ T
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The subsequent analysis reduces to the following cases:
Case 1: ℙ[A+] > 0, ℙ[A−] > 0, ℙ[A0] > 0.
Case 2: ℙ[A+] > 0, ℙ[A−] > 0, ℙ[A0] = 0.
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Define the desired measure Q ∼ ℙ on ℱ�0 in such a way that
Q[A+] = 1

2+" and Q[A−] = 1+"
2+" .

Define (S̃t)0≤t≤�0 by letting

S̃t = EQ [S�0 ∣ℱt ], 0 ≤ t ≤ �0.

and observe that

S̃0 = Q[A+]S0(1 + ") + Q[A−]S0/(1 + ") = S0

and that (S̃t)0≤t≤�0 remains in the ”"-corridor”
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The inequality 1
1+" ≤

S̃t
St
≤ 1 + " then is satisfied for 0 ≤ t ≤ �0,

and (S̃t)0≤t≤�0 is a Q-martingale.

Idea of continuation of construction:
As S̃�0 = S�0 we may iterate the procedure by letting

�1 = inf{t ≥ �0 :
St

S�0
is either 1 + " or

1

1 + "
} ∧ T

etc, etc.
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Let us now turn to
Case 1: (ℙ[A0] > 0,ℙ[A+] > 0,ℙ[A−] > 0).
Assume (essentially w.l.g.) that ST = S0 on A0. We now have one
degree of freedom in the construction of Q.
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To define Q, choose 0 < � < 1, and let

Q[A0] = �, Q[A+] = (1− �)
1

2 + "
, Q[A−] = (1− �)

1 + "

2 + "
.

⇒ S̃0 = EQ [S�0 ] = S0
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Remark

If S has ”conditional full support” in C ([0,T ],ℝ+) w.r. to ∥ ⋅ ∥∞,
then we are always in case 1 of the above construction and
therefore have in every step one (conditional) degree of freedom
0 < � < 1.
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This allows for the construction of ”many” "-consistent price
systems (S̃ ,Q). These may e.g. be used to give easy ”dual proofs”
of the so-called ”face lifting” theorems (Soner, Shreve, Cvitanic
’95, Levental, Skorohod ’97).
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Face Lifting Theorem (Levental-Skorohod ’96,
Soner-Shreve-Cvitanic ’95,...,Guasoni-Rasonyi-S. ’08):

Suppose that S = (St)0≤t≤T has conditional full support in
C+[0,T ] and suppose " > 0 as transaction costs.
Then the cheapest way to superreplicate an option
CT = (ST − K )+, i.e., the smallest constant such that there is H
satisfying

CT ≤ constant +

∫ T

0
Ht dSt − "

∫ T

0
St dVart(#)

is to take
constant = S0, Ht ≡ 1.

Summing up:

In the presence of (even very small) transaction costs, the paradigm
of replication/super-replication cannot provide any non-trivial
information for the problem of pricing and hedging derivatives.
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What to do?

Utility maximisation (portfolio optimisation) does make good
sense also in the presence of transaction costs:

u(x) = sup
#

E[U(x +

∫ T

0
#t dSt−"

∫ T

0
St dVart(#))], x ∈ ℝ+.

where U(x) is a fixed concave, increasing function
(e.g. U(x) = log(x).)

This problem still makes sense for ”random endowment”
XT ∈ L∞(Ω,ℱT ,ℙ) (e.g. XT = CT ):

u(XT ) = sup
#

E[U(XT +

∫ T

0
#t dSt − "

∫ T

0
St dVart(#))]

Utility indifference pricing (de Finetti: ”certainty equivalent”):
define the price x for XT implicitly by

u(x) = u(XT )

23 / 29



What to do?

Utility maximisation (portfolio optimisation) does make good
sense also in the presence of transaction costs:

u(x) = sup
#

E[U(x +

∫ T

0
#t dSt−"

∫ T

0
St dVart(#))], x ∈ ℝ+.

where U(x) is a fixed concave, increasing function
(e.g. U(x) = log(x).)

This problem still makes sense for ”random endowment”
XT ∈ L∞(Ω,ℱT ,ℙ) (e.g. XT = CT ):

u(XT ) = sup
#

E[U(XT +

∫ T

0
#t dSt − "

∫ T

0
St dVart(#))]

Utility indifference pricing (de Finetti: ”certainty equivalent”):
define the price x for XT implicitly by

u(x) = u(XT )

24 / 29



What to do?

Utility maximisation (portfolio optimisation) does make good
sense also in the presence of transaction costs:

u(x) = sup
#

E[U(x +

∫ T

0
#t dSt−"

∫ T

0
St dVart(#))], x ∈ ℝ+.

where U(x) is a fixed concave, increasing function
(e.g. U(x) = log(x).)

This problem still makes sense for ”random endowment”
XT ∈ L∞(Ω,ℱT ,ℙ) (e.g. XT = CT ):

u(XT ) = sup
#

E[U(XT +

∫ T

0
#t dSt − "

∫ T

0
St dVart(#))]

Utility indifference pricing (de Finetti: ”certainty equivalent”):
define the price x for XT implicitly by

u(x) = u(XT )

25 / 29



What to do?

Utility maximisation (portfolio optimisation) does make good
sense also in the presence of transaction costs:

u(x) = sup
#

E[U(x +

∫ T

0
#t dSt−"

∫ T

0
St dVart(#))], x ∈ ℝ+.

where U(x) is a fixed concave, increasing function
(e.g. U(x) = log(x).)

This problem still makes sense for ”random endowment”
XT ∈ L∞(Ω,ℱT ,ℙ) (e.g. XT = CT ):

u(XT ) = sup
#

E[U(XT +

∫ T

0
#t dSt − "

∫ T

0
St dVart(#))]

Utility indifference pricing (de Finetti: ”certainty equivalent”):
define the price x for XT implicitly by

u(x) = u(XT )

26 / 29



What to do?

Let #̂x and #̂XT be the optimizing strategies corresponding to
x and XT ; the difference #̂XT − #̂x may be interpreted as a
hedging strategy for XT .

Research programm:
derive an asymptotic expansion for "→ 0 and H → 1

2 how the
option prices and hedging strategies deviate from the classical
Black-Scholes price (compare Fouque-Papanicolao-Sircar,
Janecek-Shreve, Kramkov-Sirbu etc.).
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